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Abstract. Equivalent formulae for yim(rl  x r2) are derived from boson and hyperspherical 
calculus. As a by-product, apparently new sum rules for 3jm symbols are obtained. Two 
passages from E4 to E3 are also discussed. 

1. Introduction 

Composition formulae for R3 regular solid harmonics y r m ( r )  = r'Yrm(8, 4 )  turn out to be 
very useful in various fields of physics and chemistry. For example, the translation 
formula (Rose 1958) for y lm(r l  - r2) plays a key role in the N-body theory as applied to 
nuclear (Eisenberg and Greiner 1970) and molecular (Steinborn and Ruedenberg 
1973) physics. Throughout the course of work on the application of the Schwinger- 
Bargmann generating function method to the derivation of closed formulae for the 
Talmi and Moshinsky-Smirnov coefficients (Hage Hassan 1979, 1980a,b), a develop- 
ment of y l m ( n  x r2) in terms of y l l m , ( r l )  and y l zmz( r2 )  has been obtained incidentally. It is 
the object of this short paper to report this development, along with two independent 
(at least seemingly distant) derivations. The first one makes use of the Schwinger- 
Bargmann caiculus relative to the two-particle harmonic oscillator while the second one 
follows from a R3 projection of a composition formula relative to R4 solid harmonics. 
We first proceed with the two derivations, then deduce sum rules for 3jm Coefficients 
and finally comment on two different ways of passing from E4 to E3. 

2. First derivation 

We start from the spherical basis of the three-dimensional harmonic oscillator for one 
particle. Following Bargmann and Moshinsky (1960), we have the boson represen- 
tation 
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In equation ( l ) ,  ylm denotes a normalised solid spherical harmonic (cf Edmonds 1957) 
and a +  = (a:, a:, a : )  is a triplet of creation operators. We now go to the corresponding 
basis for two particles and use the completeness property of such a basis. Then 

The evaluation of the right-hand side of equation (4) may be performed by looking at 
the generating function of the S symbol. The latter generating function can be obtained 
from the generating function of the spherical harmonics (equation ( 5 )  below) and the 
generating function of the spherical basis for the three-dimensional harmonic oscillator 
(equation (6) below). From Schwinger (1965), we have 

where 

~ ( 1 ,  m )  = [ (1+ m ) !  (1 - m)!]-'", f+m I-m 5 = (5, 77L Q l m ( 5 ) = c ( k  m)5  77 3 

= ( a x ,  a y ,  a=) ,  a x = +  + 7 7 ,  ay = -i(t2+772), a,  = 2577. 2 2  

(As is usual, (61.02) = vlxv2x + ~ 1 ~ ~ 2 ~  + v lrvZr  so that (Y is a null-length vector built 
from 5 E e'.) From Hage Hassan (1980a), we take 

fa+2 (&.U+) 
GO, cy, u+)lo) = exp --+-)lo). ( 2 2 J 2  

With the aid of the Schwinger boson calculus (Schwinger 1965) or the Bargmann 
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integration procedure (Bargmann 1962), the left-hand side of equation (7) is found to 
be equal to 

exp[&i2(&. ctl)’+&il(&. &J’+:(&. (a1 X E ~ ) ) ]  

(&. & j )  = 2(5!3 

(G. (k1 x ~ 2 ) )  = - 4 i ~ t d ~ ~ t 2 X S ; t z I  

(5152) = 51&+ 771772, 

where 

[51521= r1772-52rl1. 

In the development of the expression (8), we insert the gener 
symbol (Schwinger 1965): 

ting function for th 3 jm 

(5~l)ll- lz+l(l[  -ll+l;,+l - - - - 2) 151 12111+1z-1 

[(I,+I2+l+1)!(11-l2+1)!(-I1+12+I)!(I1+l~-1)!]1~2’ 

Comparison of the thus modified development and the right-hand side of equation (7) 
yields 

l2  ’). (9) 
(I1 + I2 + I + 1) ! (- 11 + I2 + I)! (I1 - 12 + I ) !  

( I 1  + 12 - I ) !  

By introducing equation (9) into equation (3), we finally obtain 

ylm(rl x r2) = (-1)m-1/2(4.rr)-3/22-’(21+ 1)l” 1 S(n1, +(! - Il))S(n2,3(1- 12))  
n l l l m i  
nzlzmz 

) l l 2  

(I1 + 12 + 1 + l)! (-11 + 12 + I)! (I1 - 12 + I)! 
(I1 + I2 - I ) !  (, 

Equation (10) can be developed as 

[(24 + 1)(212 + l)]l/* 
ylm(rl  x r2) = (-1)m-‘/2[4~(21+ l)]1’2($rlr2)1 211+12 

l l m l  ( I  + 11 + l ) !  ( I +  I,+ l)! 
[zmz 

[f(I+11)]![f(I+!,)]! (11+12+I+ l ) ! ( - I 1 + I 2 + I ) ! ( l 1 - l 2 + I ) !  

[ t ( l  - Il)]! [ f ( l  - l z ) ] !  (I1 + 12 - I)! X 
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3. Second derivation 

Let q = (qo, r )  be a vector of the four-dimensional real Euclidean space E4: qo E R and 
r = (x, y ,  z )  E E3 stand for the ‘scalar’ and ‘vectorial’ parts of 4 respectively. Moreover, 
let us put 141 = (4: +r2)1/2, We take the R4 solid harmonics y n f m ( q )  to be defined by 

where C:-ll-l is a Gegenbauer polynomial in the notation of Magnus et a1 (1966).  (In 
equations (1) and (13), we employ the usual indices: do not confuse the two kinds of n.) 
The particular relations 

c; (x) = 1 for any x ,  

(0 for k odd, 

T($k + A )  (._ 1 ) k / 2  for k even, i r y A  )r($k + 1) 

c; ( 0 )  = 

will prove useful in the following. 

the following matrix of R+ X SU2 (Talman 1968): 

4=(4yo:il*I - y  + ix 
40 - iz 

The space E4 may be endowed with a quaternionic structure by representing q via 

) -  
From such a representation, we readily verify that the product of the two quaternions 
41 = (401, rd and 42 = ( q o 2 , r ~ )  is given by 

Let us now introduce the homogeneous harmonic polynomials 

9 (4 1 &L 1 ILz = I4 I 2jm4/ I4 I) IL 1 c12 4AqI E su2 (16)  
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which constitute an extension to R+ X SU2 of the matrix elements Di(cf /~4~)w1wz of the 
unitary irreducible representations of SU2 (= S3). The latter polynomials satisfy, of 
course, the multiplication formula 

The relation connecting the ynlm(4)’s of equation (13) with the 9 i ( 4 ) w 1 w z ’ s  of equation 
(16) reads (Gazeau 1978) 

or conversely 

Note that the phase factors in equations (18) and (19) differ from the ones of Banderand 
Itzykson (1966) and Sharp (1968), but that they are coherent with our defining relation 
(13). 

We are now in a position to get the development of y,,lm(q1q2) as function of 
~n1llm1(41) and yn2/2mz(qZ). It is enough to develop ynlm(q142) owing to equation (18) 
and to use equation (17) once and equation (19) twice. This leads to a composition 
formula for the R4 solid harmonics: 

The last step amounts to projecting equation (20) from E4 to EJ. This may be achieved 
by specialising equation (20) to the case Q1 = (0, rl), Q 2  = (0, r2) and n = 1 + 1. In such a 
case, the use of equations (14) and (15) gives 

when 1 - li is odd 
1O 

I when 1 - li is even, 
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so that we get the relation 

ylm(rl x r2) = (-1)m+”2(211!)-’[4~(21 + 1)(21+ l)!ll/* 

(1 - 11)! (1 - 1 2 ) !  

+ 11 + l ) !  (1 +I,+ l ) !  l l m l  

[$ ( l+  11) ] !  [$(l+ 1 2 ) ] !  I 1  

[i(1- 11)]! [ $ ( I  - 1 2 ) ] !  31 $1 
12 I X 

which can be seen to be equivalent to the central relation (1 1). 

4. Sum rules 

The three equivalent relations ( l l ) ,  (12) and (21) are valid in the case r l  = r2.  In that 
special case, they may be rewritten in the form of sum rules. For instance, we have 

or alternatively 

( ( l - l 1 ) ! ( l - 1 2 ) !  1’2 

(1  + 11 + l ) !  (1 + 1 2 +  l ) !  1 1 211+12(21*+ 1)(212+ 1) 
1112 

[ i ( 1 + 1 1 ) ] ! [ : ( 1 + / 2 ) ] !  I ,  12 E 11 12 

[$(l - 1 1 ) ] ! [ $ ( 1 - 1 2 ) ] !  $ I  41 $1 0 0 0 X ( ]( ‘) = S(1,O) 

(211 + 1)(212+ 1) [$(l+ 11)]!  [$(l + &)I! & 211+12( l+l l+ l~! (1+12+l) !  [ : ( 1 - 1 1 ) ] ! [ ; ( l - 1 2 ) ] !  

(11 + 12 + 1 + l ) !  (-11 + 12 + 1 ) !  (11 - / 2 +  I)! 1’2 11 12 1 
x (  ( 1 1 + 1 2 - 1 ) !  ) ( o  o) = S ( l , O ) .  

5. Concluding comment 

To close this paper, it is perhaps worth noting that the two derivations rely on two 
distinct ways of passing from E4 to E3. 

As already noticed, the second derivation calls for a simple projection 

emplpyed in, conjunction with a little known relation connecting the polynomials 
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9 f / 2 ( q ) W I W 2  and the harmonics y r m ( r ) :  

In contrast to the second derivation, the first one uses a well known relation (Talman 
1968): 

21+1 
y r m ( r )  = (7) g ’ ( Q ) m o .  

However, here the matrix 

d = (  -p CY CY P)ER+XSU2 

associated to the quaternion Q E Q ( r )  is deducible from r by means of nonlinear 
equations: 

x = -(CYp +&p) y = i(ap -E@)  2=la12-lp12 

CYp+Ep = 0. 

with 
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